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1. Introduction
la. Paramagnetic centers in semiconductors

In semiconductors which are both perfectly ordered and pure, all
spins and orbital momenta are paired off. These materials are diamagnetic
and provide no signals in magnetic resonance. Paramagnetism can arise
from lattice defects and impurities in these crystals /1,2/.The following
cases can be distinguished:

- Surface states. Unpaired electrons will reside in dangling bonds
at the semiconductor surface. The density of these states is reduced
by bond reconstruction, by which new surface bonds are formed which
are lower in energy and are doubly occupied. The surface resonance
is a broad structureless isotropic line with g-value g = 2.0055.

The density of centers can be influenced by surface treatment, for
instance sandblasting increases while chemical etching reduces the
number of surface states /3-5/.

- Dislocations. Several resonances associated with dislocations are
known. Broken bonds in the dislocation core may contain electrons
with non-paired spin. Paramagnetism may also arise from impurities
precipitated onto the dislocation (decoration) or from defects
created by dislocation motion. Dislocations can be introduced in
a controlled manner by plastic deformation at elevated temperature,
typically 600 - 800°C in the case of silicon /6/.

- Free carriers. In highly doped semiconductors free electrons will
be excited into conduction band states, or holes in upper valence
band states in p-type material, giving rise to Pauli spin paramagne-
tism. The g-value for electrons in the silicon conduction band is
g = 1.99875. Resonances from free holes have not yet been reported
/3,7-9/.

- Point crystal lattice defects, and small aggregates of these defects.
Typical examples in this category are the monovacancy, divacancy
and multivacancies. They are created by quenching of samples, or
in a more controlled manner by particle irradiation, in particular
by electron irradiation /10/.

- Impurities, which are atoms of a different chemical nature than the
host. This important class includes the shallow dopants, consisting
of the group V donors in silicon and germanium: P, As, Sb, /3,11-14/
and the group III acceptors: B, Al, Ga, In /11,15/. Several other im-
purities are known to introduce levels which are deep in the bandgap.
The impurities S /16/ and N /17,18/ are examples of impurities occupy-
ing substitutional sites in the lattice, while transition metals
(Fe,Cu) preferentially are found on interstitial sites. Small impuri-
ty complexes, such as the iron-acceptor pairs, are also often para-
magnetic /19,20/.

- Associates between lattice defects and impurities. Mobile defects can
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be trapped at other defects forming complexes, or even larger clusters.
Well-studied examples are the oxygen-vacancy /21/ and the phosphorus-
vacancy /22/ centers.

- Structural defects. In compound semiconductors a constituent atom may
occupy a position on the wrong sublattice. This can be the result of
non-stoichiometric composition or of other specific treatments (irra-
diation, dislocation motion). These are called antisite defects /23/.

All of these defects introduce electron energy levels in the bandgap.

Therefore, their charge state and hence their paramagnetism can be af-

fected by the Fermi level, whether in equilibrium or non-equilibrium

conditions. Doping and ionization (e.g. by illumination) are tools to

enhance the paramagnetic state.

Ib. Principles of magnetic resonance

The energy of an electron, with magnetic moment :, when placed in
a magnetic field B will change by an amount —:.E. This is the famiiiar
Zeeman effect. The magnetic moment is related to the angular momentum
3 by the proportionality N= gqu, with vy the Bohr magneton and g the
spectroscopic splitting factor. For orbital motion g = I and for pure
spin g = 2, more exactly g = 2.0023. In the general case of coupled
orbital and spin momentum the g-factor is given by the Landé formula.
In a magnetic field the quantized sublevels, labelled by my, will split

in energy. This is illustrated in figure 1.

m
E J
+1/2
hv
-12
B
Figure 1. The Zeeman splitting of energy levels for J = 1/2 as a

function of the magnetic field B.

Transitions between the sublevels can be induced by electromagnetic
radiation. This phenomenon is electron paramagnetic resohance, EPR/24-26/.
Stimulated absorption and emission will occur when the quantum of radia-
tion hv equals the energy separation of two levels. The former process
is usually stronger as in thermodynamic equilibrium the lower level is
(slightly) more populated. The resonance condition for magnetic dipole

transitions, with selection rule AmJ =1, is given by
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hv = guBB. (@))]

In the usual experimental situation the spectrometer is designed
for a microwave frequency which is only slightly variable and the
resonance condition is satisfied by adjusting the magnetic field. The
classical spectrometer is operated in the X-band at v = 9 xlO9 Hz.
For g = 2 the resonance then occurs at B = 0.32 T.

Nuclear magnetic resonance (NMR) is the equivalent experiment
applied to magnetic nuclei, I # 0, rather than to electrons. The re-

sonance condition is similarly

hv = gyHNB- ) (2)
>

Since the nuclear moments-gNuNI are typically 3 orders of magnitude
smaller than those of electrons, the energy splittings are corres-
pondingly smaller. Resonance frequencies are in the 1 - 10 MHz range
for the magnetic fields of about I T which are usually employed.

Both resonance techniques can be combined to great advantage in
what is called electron-nuclear double resonance (ENDOR) /27/. A level
1

scheme for a system with electron spin J = % and nuclear spin I = 5
is shown in figure 2. The energy levels are at:
E = gugBm, - guuyBm;. (3)
m. m
J I

-————————I———- +12 -1/2
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-2 +112
EPR NMR

Figure 2. Energy levels for a J = 1/2, I = 1/2 spin system, with EPR

and NMR transitions indicated.

The EPR transitions are characterized by Auh = l,AmI = 0, while in NMR
only the nuclear quantum number changes by one. In ENDOR an EPR is in-
duced with high microwave power, destroying the thermal distribution

according to Boltzmann statistics over the two states involved by satu-
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rating the transition. If under such conditions an NMR transition is in-
duced it will be observable in the EPR by a change in intensity of the

. latter signal. NMR is characterized by high energy resolution, typically
103 times better than in EPR. However, EPR surpasses NMR by its superior
sensitivity, which is in the order of I06 times better. The attraction

of ENDOR is that it combines both advantages to a large extent.

lc. Spin-Hamiltonian

A very useful concept introduced to analyse and acting as an inter-
mediate step in understanding magnetic résonance results is the spin-Hamil-
tonian /28-30 /. It is an expression which includes all relevant contri-
butions to the energy dependent on the electron spin j and nuclear spin(s)
1. An effective spin value J is introduced by equating the number of
electronic levels which in the ground state are required to describe the
interactions properly, to 2J+1. The spin-Hamiltonian operator has a form
like:

L3R ’ )

The first line enumerates some interactions in which electrons are in-
volved only: the Zeeman energy, a zero-field term, and the cubic field
energy, respectively. In the second line some energy terms associated
with one nucleus of spin I are given: its Zeeman and quadrupole energy.
An interaction term between electrons and nucleus, called hyperfine inter-
action, is given on the third line. Depending on the complexity of the
system a different number of terms is required for a satisfactory des-
cription of results. The larger the number of spins involved and the
lower the symmetry, the more terms will be needed. The coupling para-
meters, such as 2; Tﬁ Yi ‘K: are generally tensors as they have to account
for the angular dependent properties of coupled vector quantities. In

the analysis of experimental results they are considered as adjustable
parameters which are matched to obtain best agreement. Once their values
are determined, they must be interpreted in more physical terms, i.e.

in terms of atomic structure, interactions and wave functions. For
g-tensors the theoretical means to do so are still in an unsatisfactory
state. The interpretation of hyperfine interaction tensors is much more

straightforward.

1d. g-Tensor
All paramagnetic centers, even the simplests, have an electronic
g-value. This, therefore, is the most important spin-Hamiltonian para-

meter. Unfortunately a physical interpretation of the g-value, more
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generally g-tensor components, is difficﬁlt. In most cases the situation
as regards orbital motion of defect electrons in crystals is very much
different from that of free atoms. Strong crystalline fields with lower
than cylindrical symmetry prevent circular orbital motion, leading to
the phenomenon called quenching of orbital momenta. Therefore, there is
spin-only paramagnetism with a corresponding g-value g = 2.0023.

Small deviations from g = 2.0023 are caused by coupling of spin to the
lattice through spin-orbit interaction. Only by this second order
perturbation the presence of the crystal is represented in the g-value.
The formal expression for the g-tensor components is /26,28/:

<0|L,|n>.<n|Lg0>

- - r o« B
Byg = 2:0023 8o -21 E T (5)

with a,B8 = x,y,z. The spin-orbit coupling constant \ can be obtained
from optical spectra. A calculation of 8.8 requires knowledge of the
ground and excited states |0> and |n> and of the excitation energies
En-Eo. In the case of defects in covalent semicpnductors this informa-
tion is seldom available in sufficient detail. This represents an area
where improvément should be achieved.

Without full quantitative understanding of the g-tensor components,
the structure of the tensor still reflects the symmetry of the defect
in the host crystal. Elemental semiconductors, such as silicon,
crystallize in the diamond lattice. The symmetry, as seen from an
atomic site, is specified by the point group 43m. This point group
contains 24 operations which leave the crystal invariant. Incorporation
of a defect or impurity in the crystal may leave all these symmetry
transformations intact, or may destroy some or all of them. A systematic
analysis reveals that 8 different cases can be distinguished. These are
cubic, tetragonal, rhombic I, rhombic II, trigonal, monoclinic I, mono-
clinic II and triclinic, in order of decreasing symmetry. Obviously,
when a transformation (rotation, inversion, reflection) transforms a
defect plus surrounding crystal into itself, then also the transformed
g-tensor must be identical to the original. In mathematical terms,
when the transformation is given by‘iz then for a symmetry transforma-
tion?:?'.?.‘i’. This demonstrates that the existence of symmetry im-
poses constraints on the g-tensor. It may require some components to be
equal, or to be zero. A specific structure of the g-tensor corresponds
to each of the 8 symmetry cases mentioned. However, it is also possible
that a symmetry transformation of the crystal transforms the defect into
an orientation which is different from the starting configuration.. The
new defect orientation is related to the original one by the symmetry
and its g-tensor is obtained from it by ?=?‘?? The number of

distinguishable defect orientations will be higher the lower the sym-
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metry of the defect. It varies from 1 in the case of cubic symmetry
to 24 for triclinic centers. Of course, since the g-tensors of the
various orientations are related, the resonance fields as observed in
‘EPR reflect this symmetry. For specific directions of the magnetic
field the orientation of several defects may be equivalent, giving
rise to coincidence of the resonance lines. This phenomenon is called
orientational degeneracy. A one-to-one correspondence exists between
the 8 cases of symmetry and the patterns of resonance fields of the
variously oriented defects when the magnetic field is rotated in the
(0T1)-plane.

Some examples will illustrate these points. Figure 3 shows the
g-factor of unionized phosphorus in silicon. A single impurity atom
on a substitutional site has all symmetry operations with the

lattice in common.

[100] [111] [011)
2000 -
g - .
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] 1 | 1 1 11 1
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O [degrees)

Figure 3. g-Value as a function of orientation of magnetic field for

cubic symmetry, example phosphorus in silicon.
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reduces to a scalar g-value and the resonance field is isotropic.
An intermediate case is exemplified by defects of trigonal symmetry,

such as nitrogen in diamond (EPR spectrum: C-Pl) and substitutional

iron in silicon (EPR spectrum: Si-NL19). The structure of the
g-tensor is

- 8.x Sxy Bxy
&= gxy Exx gxy

N gxy gxy Byx

containing two independent tensor components. Resonance patterns for

‘B in the (0T1)-plane are shown in figure 4. For %//[IOQI the orien-
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Figure 4. The resonance field B as a function of orientation of magnetic
field for trigonal symmetry, example the spectrum Si-NL20

associated with an iron pair defect in silicon.

tational degeneracy is the maximal 4. Finally, the most general case
is that of defects with lowest, i.e. triclinic symmetry. There are no

constraints on the g~tensor which assumes the general form

- .v gxx gxy gzx
o
B 5 1 By By By,
L g

zx gyz zz

with all six components independent. The rotation pattern of resonance

fields is illustrated by figure 5, representing the spectrum labelled
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Figure 5. g-Values as a function of orientation of magnetic field for
triclinic symmetry, example the spéctrum Si-G10 associated

with the neutral BV complex in silicon.
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Si-G10, corresponding to the boron-vacancy complex in silicon. Examples
illustrating the other cases also exist. These symmetry considerations
are obviously very important as they give direct unambiguous information
about the structure of a defect.
le. Hyperfine interaction

It is much easier to deal with hyperfine interactions on a quanti-
tative basis. The reason is that this interaction arises from
dipole-dipole coupling between the electronic and nuclear moments :;
and En and that an expression for this interaction is readily available.

The dipole-dipole energy for separation 4 between the moments is given

by:
>
Y Yo (U _ , (i D) (i D) ) ©
T { 3 5 & )
r r

u > > > > >

‘H e - O J.I _ ., (J.r)(I.r)
i G BeMBENMN r_ 3 _-'5_—} M

r

The expression can be cast in the form 3:th, as given in the spin-
Hamiltonian (equation 4). To evaluate the hyperfine tensor components
AaB the interaction must be averaged over the electron positions b4
with respect to the nucleus. With electron wave function y the

AuB (2,8 = x,y,2z) are found from:

Mg = Wl Grgr, - £Po /ey (8)
A flexible approximation to the electron wave function is provided

by the method of linear combination of atomic orbitals (LCAO). In

the case of silicon a logical choice of basic functions are the atomic

3s and 3p wave functions. In this expansion the defect electron wave

function is given by:

9)

b= E (aix3s,i * BixXpr,i M Biyx3py,i + BizX3pz,i)’

where the index i runs over lattice sites around the defect on which

the atomic orbitals are centered. For semiconductors other than silicon,
or when impurities are present, the appropriate atomic valence orbitals
must be included in the expansion. For deep level defects the electron
is quite strongly localized near the defect center. One thus expects
large wave function coefficients for atoms on the defect site and for
nearest neighbour positions, and generally decreasing values of the

a's and B's for sites of increasing separation. By substitution of y
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from equation (9) into equation (8) a relation is established between
the wave function coefficients and the hyperfine constants. The hyper-
fine interaction with a magnetic nucleus on site i results primarily
from the occupation of atomic orbitals centered on this same site.
Using expansion (9) the isotropic part of the interaction, arising
from the spherically symmetric s-part in the wave function, is sepa-
rated from the axial part due to the atomic p-functions. Non-axial
terms are outside the scope of a treatment based on an expansion with
s~ and p-orbitals only. A specific problem arises with the s-type
orbital, since the integral has a singularity at the site of the

nucleus, r = 0. Proper solution gives the result:

_ _ _ _8r Yo 2 2
a = Axx,i - Ayy,i - Azz,i = 3 ' %m 8eVB&MN 0‘il)(3s(0)|
Xy, 1 yz,1 = Azx,i =0 (10)

Having substituted p-functions into equation (8) their angular variables
are easily integrated. For the axial part of the interaction one then

obtains the principal values:

b, =-A_ . =-A_ . =i A R RPN an
i XX, 1 yy,1 2%zz,1 S ‘4 ®e"BSN'N "i 3p’
with 6g = B-2 + BZ + B? On its own principal axes the hyperfine
i ix iy iz®

tensor is:

a.-b, 0 0
- 1 1 \
Ai = 0 ai_bi 0 e (12)
0 0 a,+2b, )
1 1

. 2
For most elements the atomic parameters !X(0)| and <l/r3> were
calculated using Herman-Skillman wave functions and are available
30 -3
m

in tabulated form. For silicon 'X3s(0)|2 = 34.6x10 and

<|/r3>3p = 18.2x10%0 o3 /317,

1f. Magnetic resonance spectrometer
The block diagram of the EPR-ENDOR spectrometer which is in use in
the authors research group at the University of Amsterdam, is shown in
figure 6 /32/. Its main features are
- Operation in the K-band, with microwave frequencies near 23 GHz,
wavelength about 1.3 cm. A high microwave frequency is preferred
since this enhances sensitivity and resolving power.
- Superheterodyne scheme. Two klystrons, A and B in the diagram, produce
microwave signals with a slightly different frequency. Klystron B is
the local oscillator in the receiver system. The signals are mixed

in the balanced mixer BM I and BMII to produce an intermediate fre-
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Figure 6. Block diagram of a superheterodyne EPR-ENDOR spectrometer.

After Sieverts /32/.

quency IF. In our case this difference frequency equals 60 MHz. At
these high frequencies the 1/f-noise of detection diodes is negligible.
The resonance signal at the IF-stage, produced by BMI, is detected
with respect to a reference IF signal, produced by BMII, in the double
balanced mixer DBM. By adjusting the relative phase of the two signals,
using the variable phase shifter, the spectrometer can be tuned to ob-
serve either the dispersive component x' or the absorption component x'
of the magnetic susceptibility y = x' - ix".

Samples are mounted in a reflection type microwave cavity. Depending

on the sample shape a cylindrical cavity, resonating in the TEO!] mode,
or a rectangular cavity in the TE102 mode, is chosen.

The microwave frequency of klystron A has to be adjusted carefully to

the resonance frequency of the cavity. Therefore, the klystron frequen-
cies are stabilized by comparing the signals to quartz cfystal oscilla-
tors; fundamental frequency near 15 MHz, in the MOS-5-s and PLS-60
synchronizers.

The magnetic field is stabilized and regulated using a Hall probe system.
In search of a resonance the field can be linearly swept across a set
field range in a set time.

Accurate
a locked
Upon the
field is

with respect to this modulation.

determination of the magnetic field strength B is made by
proton resonance system.
linearly swept field an audio frequency modulated magnetic

superposed. The resonance signal is detected phase sensitive
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- The magnetic field is rotatable around cavity and sample in the
horizontal plane. Usually the Samples are mounted with their
DT]] crystallographic axis vertically. In this way the magnetic
field can be easily aligned parallel to the main crystal directions,
which are [100], [111] and [011].

- A cryogenic set-up allows operation with the sample at temperatures
between 1.5 K and room temperature . The temperature stability is
better than 0.1 K.

- For ENDOR measurements the required RF fields can be introduced
in the cévity by a special coil insert. Alternatively, a cavity is
available of which the silver plated cylindrical wall is machined in
the form of a helical coil. The RF field is on-off modulated by an
electronic switch. In the case of ENDOR experiments double phase
sensitive detection is employed.

- Facilities to illuminate samples in the cavity with light, which can
be monochromatic or polarized, are available. The light is channeled
from outside the cryostat to the sample via a quartz rod insert or
a hollow silver tube.

- Samples in the cavity can be subjected to uniaxial mechanical stress.
Values up to 2 GPa have been realized. Forces are transmitted to the

sample by a stainless steel stress rod insert.

2. Defects studied by magnetic resonance
2a. Vacancy and divacancy in silicon
Models of these intrinsic lattice defects, indicating pictorially

in a simple manner the bond reconstruction, are shown in the figures

7 and 8. Deep levels in the band gap are associated with these defects.

Figure 7. Model of the negative vacancy in the orientation labelled ad.

Figure 8. Model of the divacancy in the orientation labelled ad.
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In both cases the defects have been observed in magnetic resonance in

the positive and negative charge states /33-35/. The rotation patterns

for B in the (0T1)-plane are given in the figures 9 to 12. The positive
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Figure 9. Angular dependence of the g-values of EPR spectrum Si-Gl

corresponding to the positively charged vacancy si:v'.

Figure 10. Angular dependence of the g-values of EPR spectrum Si-G2

corresponding to the negatively charged vacancy Si:V .
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Figure 1l. Angular dependence of the g-values of EPR spectrum Si-Gé6

corresponding to the positively charged divacancy Si:V2

+

Figure 12. Angular dependence of the g-values of EPR spectrum Si-G7

corresponding to the negatively charged divacancy Si:V2
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+ -
vacancy V has tetragonal symmetry, pointgroup 42m. In the negative
charge state V_ the lower rhombic I symmetry, pointgroup 2mm, is assumed

by the defect. The divacancy has monoclinic I, pointgroup 2/m, symmetry

+

in both charge states V2 and V;. Figure 13 illustrates the description

b b-c

%q,—f—mg#)\(bfc)
——a-
b,

Qy ———a;=—+——0a, =4+ Q)=+

dj—+——Db+c ay—t—t—Db+c-Ala+d)
L3m 4Z2m L2m 2mm L2m  2mm
v V' v° V- ve A

(a) (b)

Figure 13. (a) LCAO level scheme of the vacancy in its various charge
states. (b) A revised scheme in which the b]°1eve1 lies

below the a?-level.

of the electronic structure of the vacancy in terms of a one-electron
LCAO model. An electron occupying an orbitally degenerate state gives
rise to the Jahn-Teller instability. The defect will spontaneously dis-
tort to lower symmetry, thereby lifting the degeneracy. The resulting
lowering of the energy is the driving force for the distortion. It
occurs when adding an electron to V++, converting the vacancy into V+.
In cubic 43m symmetry the added electron will occupy the triply dege-
nerate t,-level. Upon distortion to the tetragonal 42m symmetry the
occupation of the b2~orbital as indicated in figure 13 results in
lower energy, creating this new stable configuration. A similar situa-
tion is again encountered when changing the charge state from Ve to V.
The doubly degenerate e-level in symmetry 42m will split into the bl
and b2 singlet states. The symmetry is further lowered to rhombic I,
pointgroup 2mm. All of this is in agreement with the experimental ob-
servations. For the divacancy a similar analysis also leads to conclu-
sions which are confirmed by the experiments.

Detailed measurements of the hyperfine interactions for the vacancy
and divacancy have been made using ENDOR /36-38/. Since for these in-
trinsic lattice defects no impurities are involved, the hyperfine inter-

29

actions are with the ““Si nuclei only. These have spin I = 1 and the

2
nwtural abundance of the magnetic isotope is 0.047. A more detailed
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discussion will be given here only for Si:V . Its EPR and ENDOR spectra

are accurately described by J = %, Ii = %, and the spin-Hamiltonian:
Ered > > .
= z -
Ho=up BT+ I QAL - g T (13)

The summation i runs over atom sites around the vacancy, to each of
which a specific strength of the hyperfine interaction ‘X must be
assigned. To analyse the hyperfine data it is again beneficial to
exploit symmetry arguments fully. In the general case a 29Si atom
occupies a position with respect to the vacancy without particular
qualities. By operating on this atom with the symmetry tranforma--
tions of V , contained in the group 2mm, three other sites are gene-
rated related to the original position by the symmetry. Together
the 4 atoms constitute what is called a shell. The angular dependen-
ces of the ENDOR frequencies of all atoms in a shell form a typical

pattern. In figure 14, representing the largest general class hyper-—

[100] [111] [011)
9 -
8 -
V—Vz
(MHz) 7 }
6 -
) 1 1 1 i 1 1 1 1
0 30 60 90

O (degrees)

Figure 14. Angular dependence of the hyperfine interaction v -V,
for the largest general class tensor. The interaction has
nearly <ll11>-axial symmetry.

29

fine interaction, the difference of the ENDOR frequency v and the Si

nuclear Zeeman frequency v, B/h is plotted. However, the site

= eyMy
occupied by the ngi nucleus may be on one of the mirrorplanes of
the vacancy, or even be on both of them. In such particular cases the

system (V + 29Si nucleus) will be invariant under some or all of the
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operécions in the pointgroup 2mm. This is reflected in a simplified
structure of the hyperfine tensor. In the experiment it is revealed
by symmetry required coincidences of the resonance frequencies.
Characteristic simplifications in the rotational pattern will be ob-
" served. This is of great help in assigning the hyperfine tensors to
specific shells of atoms.
In section le the conversion of the contact term a in the hyper-
fine interaction to the probability density of the defect electron
was discussed. Results for the vacancy and divacancy are presented in

the figures 15 and 16. In these pictures a monotonous decrease of the

o
i (<]
1 t _ 1= tensor classes_|
E ensor classes E
E oMad E o Mad
o 26 F
r S xMbc r \ 4G
B A% oT a
L L s
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weE w2 E
.3 F L
(A7) [ ‘A'3) : b :
\
001 - 001 §\§ N -
F E 8a o
N [ NN Y
[ i A
0001 ) . 0001 v 0 L4 0w Ly
0 5 . 0 5 10
r(A) T(A)

Figure 15. The probability density {w|2 of the defect electron in the
negative vacancy plotted against the distance r to the

vacancy.

Figure 16. The probability density [w[z of the defect electron in the
negative divacancy plotted against the distance r to the

center of the divacancy.

electron probability as a function of the distance to the defect is
assumed /39/. The figures illustrate the electronic size of these
deep level defects. The full lines in the figures are approximations

by an expression lez = A

exp(—2r/ro). The parameters A and T, for
best fits are given in table I. In particular in the case of V the
wave function is far from spherical. The defect electron is predomi-
nantly localized in one of the wmirrorplanes. Hyperfine studies

thus provide detailed insight in the size and shape of defect electron

clouds.
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Table I. Parameters of the empirical function Az exp(-2r/ro),

fitted to the values of [w]z of the vacancy and divacancy in

silicon.
2
Defect Type of shell A °
®]™3 ®)
- Mad 10 2.4
- G 0.6 3.2
- Mbc 0.1 3.0
vz‘ 2 3.0
vy G 1.1 2.6
+
vy 7 1.9
+
v3 G 4.3 1.9

A particular problem was encountered in the analysis of the
ZINDOR results for Si:V . On the basis of the generally adopted model
the defect electron was expected to be in a b‘-type orbital. Accor-
ding to group theoretical classifications this is an orbital which is
anti-symmetric when reflected in one of the vacancy's mirrorplanes.
Consgquently, the wave function is exactly zero in this mirrorplane,
predicting a vanishing contact hyperfine term for the atoms in this
plane. As is illustrated in figure 15 this is contradicting the ENDOR
results. Though |w|2 is small in mirrorplane bc, it is certainly not
zero. A way out of this problem is suggested in the right part of
figure 13. This revised level scheme is based on the assumption that
the trigonal distortion of V is so large that the bl—level moves
below the a?~1eve1. This results in an a,-type ground state, allowing
the contact terms as observed to exist. However, in the modified
case the antibonding combination of the nearest neighbour orbitals a
and d in state b, has lower energy than the bonding combination in
state a?. This is not likely to be true. An alternative explanation
can be found in the consideration of many-electron effects. Such
more sophisticated treatments of defects are presently being de-

veloped /40/.

2b. Iron in silicon

Atoms of the 3d transition element series preferentially dissolve
in silicon crystals on interstitial sites. Because of their high mobi-
lity these atoms are easilv involved in defect interaction processes,
such as impurity pair and complex formation, and in creating macroscopic
precipitates. Since deep electronic levels in the silicon bandgap are

associated with these defects. they affect carrier concentrations, life-
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times and trapping. Their presence in crystals, in concentrations up to

about 1022 atoms per m~, causes long term instabilities of the semi-

conductors and of the devices made in them. Studies of the electronic
structure of transition metal impurities are therefore both of practi-
cal and fundamental interest.

A model to explain the electronic properties of the 3d tramsition
metals in silicon was proposed by Ludwig and Woodbury /17,41/. The
elements of the model are as follows:

- Transition metal atoms occupying substitutional sites transfer four
electrons to the 4s and 4p orbitals to form sp3 hybridized bonds
with the four nearest neighbour silicon atoms. All remaining elec-
trons are in the 3d shell. Interstitial atoms have all their valence
electrons in the 3d shell.

- The cubic crystalline field partially lifts the five-fold orbital
degeneracy of the 3d states into a doublet e and a triplet t, level.
For substitutional atoms the doublet states are lower in energy than
the triplet states. For interstitial impurity atoms the ordering is
the reverse.

- The crystalline field is considered to be weak and therefore the
doublet-triplet splitting is small. The electrons occupying these
orbitals will obey Hunds rule of aligning spins. The maximum total
spin consistent with the Pauli principle is obtained.

The application of the Ludwig-Woodbury model in analyzing the EPR

spectra of iron in silicon is illustrated by three cases, in all of

which only one iron atom is involved. The three cases considered are

Si:Feg, Si:Fe; and Si:Fe:, respectively.

For neutral interstitial irom, Si:Feg, which has the electronic
configuration (3d)8, the population of the ty and e levels by the

eight electrons is shown in figure 17(a). The 3A ground state is an

2
orbital singlet, L'=0, and has spin S = | as there are two unpaired
electrons. The spin Hamiltonian appropriate for J = | is

H = uBEfEtj + 393, However, because of the cubic symmetry of the tetra
hedral interstitial site, the g-tensor reduces to a scalar g-value and
the D-tensor vanishes. The level scheme of figure 18(a) applies. One
EPR line is observed as the two transitions my = -1+4>0 and my = 0+
coincide. The existence of two transitions is demonstrated by applying
uniaxial stress to the crystal. In the lower symmetry of a strained
crystal the D-tensor no longer vanishes and the two resonance fields
will shift in opposite ways. The fine structure splitting by uniaxial
compressive stress is shown in figure 18(b) /42,43/. The g-value
g = 2.070 is close to g = 2, consistent with the quenching of the
orbital momentum.

Positively charged interstitial ironm, Si:Fe;, has configuration

(3d)7 and the occupation of the levels is as shown in figure 17(b).
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Figure 17. Electronic structure of interstitial and substitutional

iron in silicon.

Figure 18. The fine structure splitting of the EPR spectrum of neutral
interstitial iron in silicon induced by uniaxial stress.

(a) Without stress, (b) with stress.

As there is one hole in the t, states an effective orbital angular
momentum L' =1 remains. The spin arising from 3 unpaired electrons
is S = 3/2. In the ground state these momenta couple to a total
J = |L'-s| = 1/2, in agreement with the EPR observation. With the or-
bital momentum a g-factor g = -3/2 is associated. An adapted Landé@
formula gives the spectroscopic splitting factor as 8172 = 5/3gS —2/3gu.
For g = 2, g = -3/2 the formula predicts 8172 = 13/3; for g = 0
one expects 81/2 = 10/3. The experimental result, an isotropic
g = 3.524, is between these limits, but closest to the latter value.
This is understood as a manifestation of the dynamic Jahn-Teller
effect /44/. The orbitally degenerate ground state is Jahn-Teller in-
stable. The effect is, however, small and the distortion rapidly moves
from one direction into another. In the magnetic resonance experiment
the average cubic symmetry is reflected in the isotropic g-value. The
intricate mixing of atomic and electronic motion necessitates the use
of vibronic wave functions. A consequent reduction of the matrix ele-
ments between spin states is known as the Ham effect. For Si:Fe; the
orbital contribution to the g-factor is reduced from g = -3/2 to
about g1 = -0.3.

A recently reported EPR spectrum labelled Si-NL19 possibly

corresponds to substitutional iron in the positive charge state /45/.

The spectrum is observed to strong intensity in iron-doped silicon

after irradiation with energetic electrons. The vacancies produced
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in the irradiation may comb}ne with interstitial iron atoms to form
the substitutional impurity. Figure . 7(c) illustrates the Ludwig-
Woodbury model for Si:Fe;. The electronic configuration (3d)3 gives
S = 3/2. One electron occupies the :. states, leading to L' = |

and a triplet 4T2 ground state. A st;C1c trigonal distortion may
occur, lifting the degeneracy and quencting the orbital momentum
completely. These predictions of the model are consistent with the
analysis of spectrum Si-NL19. The angular variation for B in the

(011)-plane is shown in figure 19. All six transitions between the

[100] (111 {011
1400

1200f o 4
1000
800

B

(mT)
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Figure 19. Rotation patterns of the resonance fields of spectrum Si-NLI9

identified with positive substitutional iron in silicon.

four magnetic sublevels of spin J = 3/2 are observed. The patterns
correspond to trigonal defect symmetry. The principal values of the

g-tensor are g, = 2.1163 and g, = 2.0935. The deviation from g = 2

74
by about +0.10 is comparable to that for Si:Feg. This is consistent
with equation (5) assuming that the electronic structure of d shell
electrons of iron atoms on substitutional and interstitial sites in

silicon is rather similar.
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2c. Nitrogen in diamond

Substitutional nitrogen atoms distributed as isolated centers are
the predominant impurity in diamond crystals classified as type Ib.
Though the atomic configuration of these centers is alike the columm V
impurities in the elemental semiconductors silicon and germanium, the
electronic structure of the system C:N is entirely different. Deep donor
levels in the bandgap of diamond, at about 2 eV below the conduction band,
are associated with the nitrogen impurities. The atomic model of the
defect is shown in figure 20; the electronic structure is illustrated
by figure 21. Since the partly filled level is an orbital singlet a,
stable cubic symmetry may be expected for the defect. This, however,
does not correspond to the actually observed situation. An instability
for trigonal distortion arises from interlevel coupling between the

a; and t, states. This is also indicated in the figures 20 and 21.

2

[o71]

Figure 20. Model of substitutional nitrogen in diamond in the orienta-
tion labelled c. Also indicated is uniaxial compressive
stress B along [OT]].
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Figure 21. Effect of trigonal distortion Q on the energy levels of

substitutional nitrogen in diamond.

The neutral donors are observable in electron paramagnetic
resonance /46,47/. The aﬁgular dependence of the resonances in this
C-P1 spectrum is given in figure 22. It can be analyzed using the

spin-Hamiltonian

1100] m qony [ i00]
1

T T I [
d M
WMe =
~— -IIEIIII..II- — -1
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81
1
o : ]
|
(mT) 809~ ] 0
1
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807+
b+c !
o !
805 a
1 ! ] ] ] ]

ok

30 60 90 120 150 180
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Figure 22. Resonance fields for the EPR spectrum of neutral substitu-
tional nitrogen in diamond. Curves are labelhed with the
corresponding defect orientations. The verti£a1 line at
6 = 90° indicates the magnetic field scan for the spectra

shown in figure 24.
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H=guBJ3+ IR, (14)
with J = 1/2. A hyperfine interaction term is included since the
14N atoms, abundance 99.637%, have nuclear spin I = 1. The energy

levels E are given by
E = guBBmJ + A(e)meI, (15)

with my = *1/2, my = -1, 0, +1, and © specifying the direction of

I
the magnetic field. The resonance condition is

hv = gugB + A(®)m . (16)

In principle, the trigonal symmetry of the defect should be reflected

in an angular dependence of the g-factor, as in figure 4. However,

for the light atoms carbon and nitrogen, forming the present system,
the spin-orbit coupling constant is very small. As a result the g-value,
g = 2.0024, deviates only slightly from the free electron value
g = 2.0023, as predicted by equation (5). The angular variation due to
g, which should be observable in the m; = 0 resonance, is not reseolved.
Nevertheless, the true trigonal symmetry of the center is clearly de-
monstrated by the angular dependence of the lZ‘N hyperfine interaction
A(B) observable in the my = * | resonances.

Information on the distortion of the nitrogen centers can be
obtained from experiments where uniaxial stress is applied to the
crystal /48/. In a strained crystal the equivalence in energy of the

nitrogen orientations is destroyed. As an example, figure 23 illustrates

B
Vg = AVy

Figure 23. Schematic representation of the potential barriers separating
the nitrogen center in the orientations a, b, c and d.
Without stress (full curve) and with stress B//[0T1] (dashed

curve).
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that [OTI] uniaxial compressive stress increases the energy of the

b = [IITJ and ¢ = [lTI] orientations, but lowers the energy of the

a = Lill] and d = LTTTJ orientations. Since reorientations of the ni-
trogen centers are possible, an equilibrium will be established in which
more nitrogen atoms will populate the a and d orientations, and fewer
the b and c orientations. This phenomenon of stress induced ordering

is directly observable in the EPR spectrum. Figure 24 illustrates that
without stress the intensities of the resonances corresponding to pairs
of nitrogen orientations, a+d versus b+c, are essentially equal. With
stress applied the induced ordering is demonstrated by the increased in-
tensity of the energetically favoured orientations a and d, and the accom—

panying loss of signal height for the higher energy orientations b and c.

a+d b+cC b+c a+d
\M\ith‘w-wfis J L J L _
809 810 811 8'5 816 817

a+d b+c b+c a+d

with stress

J-JLL ,J\JL

1 1 1 I 1 L
809 810 811 815 816 817
B(mT)

Figure 24. EPR spectrum of neutral substitutional nitrogen in diamond
for ﬁ//[Oll], measured at the temperature T = 295 K, with
and without compressive uniaxial stress of 1.97 GPa along
the [OTI] direction. The central part of the spectrum, corres-—

ponding to my = 0, is omitted.
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The degree of ordering increases with the stress as illustrated in
figure 25. To analyze these data a deformation potential £ is introduced

by E = dE/de. It represents the change of energy E per unit strain e.

—
n'ao nd
nb’nc =
1 | |
0 05 1.0 1.5 2.0

P(GPa)

Figure 25. Ratio of the populations of the nitrogen orientations after
alignment as a function of uniaxial stress P parallel to
the [OT]] direction.

For the case of stress P along [OTI], as indicated in figure 20, the
energy changes are AVa= —AVb = -AVC = AVd = - ESAAP/6, where S44 is an
elastic compliance constant of diamond. In equilibrium, when a Boltzmann
distribution is established, the populations are given by n,=ng,
ng =m0, and 1ln (na/nb) = E SAaP/BkT. From the slope of the line in
figure 25 the value £ = -21 eV follows. The deformation potential is a
measure of the coupling between electron states and the lattice geo-
metry. The large value of % together with the size of the trigonal
distortion of the nitrogen atom account for the deep position of
the donor state. The donor electron in the deep level is primarily
bound by the distortion, in contrast to the Coulomb binding of electrons
in shallow donor states.

After removal of the stress any existing ordering will disappear
by random reorientation processes /49/. This effect can be studied
as a function of temperature. Figure 26 illustrates the anneal of stress
induced ordering at two temperatures. Since the reorientation of the
isolated nitrogen atoms obeys first order kinetics, the loss of excess

population An will follow a time dependence
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Figure 26. The anneal of stress induced ordering as a function of
time t in isothermal anneal treatments at the temperatures

T =167.3 K and T = 184.2 K.

Figure 27. The relaxation time T for anneal of stress induced ordering
of substitutional nitrogen in diamond as a function of

temperature T.

An = n(t) - n(x) = {n(0) - n(=)}.exp(-t/1). a7

It is characterized by a time constant t which can be determined from
the slope of the straight line plots in figure 26. The temperature de-
pendence of the reorientation time constant is given in figure 27.

At high temperatures, around 200 K, the straight line part of the curve

indicates an Arrhenius behaviour of the reorientation process:
T = To.exp(V/kT). (18)

The potential V is determined to be 0.76 eV. It corresponds to the
height of the potential barriers between separate distortions, as illus-
trated in a schematic manner in figure 23. At low temperatures,
typically below 100 K, the temperature dependence of the reorientation
rate is much lower. Under these conditions the main mechanism of re-

orientation is tunneling through the potential barriers.

2d. Antisite defects in III-V compounds
An antisite defect is formed when a single atom occupies a regular
position of the sublattice of the other chemical constituent in a bi-

nary compound. Anion and cation antisite centers can thus be distin-
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guished. Electron paramagnetic resonance has been detected. for several
antisite centers in III-V compound semiconductors.

The first firm evidence by EPR was established for the PGa center
in GaP /21,50-52/. The atomic model of this center is shown in figure
28. The antisite phosphorus atom is a double donor. Both in the neutral

and doubly ionized states the center is diamagnetic. The EPR studies
+
Ga
electron spin with the nuclear spins I = 1/2 of the phosphorus atoms

are made in the singly ionized state P, . Interaction of the unpaired
on the central antisite position and on the four equivalent ligand
sites was resolved in the EPR spectrum. The spectrum for ¥ // <100>
is given in figure 29. The hyperfine interaction with the antisite P
atom causes a twofold splitting of the spectrum into components with
equal intensities. The four ligand P atoms give rise to a further hyper-
fine splitting into 2“ components, which for ‘B // <100> coincide in
such a way as to generate a five line spectrum with intensity ratios
1:4:6:4:1. The hyperfine structure in the EPR spectrum reflects the
atomic structure of the antisite center in a very characteristic way.
The spin-Hamiltonian

>

] If.‘K’Li.Ii (18)

nes &

L s SN
1

Yp

Figure 28. Atomic model of the Pea antisite center in GaP.
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Figure 29. EPR spectrum of the PGa antisite defect in GaP for
B//<100>. After Kaufmann and Schneider /23/.

takes these interactions into account. The g-value, g = 2.007, is iso-
tropic. Also, the hyperfine interaction-zz with the central phospho-
rus atom is isotropic. Its value is ac/h = 2896 MHz. Apparently, the
center does not undergo a symmetry lowering distortion. In accordance
with the defect model the hyperfine_interactions-z;i with the ligand
phosphorus atoms have a <111> axial symmetry. The principal values of

these interaction tensors are A,//h= 314 MHz and @L/h = 179 MHz.
/i

Using the identities from equation (12) A= a +2b and Aj=a-b,
one finds aL/h = 224 MHz and bL/h = 45 MHz. To interpret these data

in more physical terms an LCAO wave function, similar to (9),

4
+ I ( + B )
i=

b= Olcx3s,c )

“LiX3s,Li ¥ PLiX3p,Li

is constructed. With the atomic parameters applicable to phosphorus,
x%q(o) = 41.6x10%% cn3 and <1/r3>3p = 24.2 x 10%% cm_3, the wave
Li = 0.02 and BLi = 0.145.

These results imply that the wave function is concentrated for 26 7

function coefficients beccme o, = 0.26, a

on the central atom and for 66 Z on the four ligand atoms together.
Since 92'%7 of the wave function is found in the region of the PP4
cluster, it is concluded that the defect electron is strongly loca-
lized. This is consistent with the deep level character of the anti-
site defect /51/. The hybrid orbitals on the ligand atoms pointing
towards the central atom are strongly p-type. From the figures given

above it follows that these orbitals are 127 s-type only and 887 p-type,
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which is more than corresponding to normal sp3 hybridization. Consequently
the bonds of the ligand phosphorus atoms with their three other
neighbours, that is the three gallium atoms, will be less p-type than
sp3. These bonds are more planar than in normal tetrahedral geometry.
This indicates a distortion in which the ligand atoms move away from
the central site. Such a breathing mode relaxation does not affect the
cubic symmetry.

EPR observations of the AsGa antisite center in GaAs have also
been reported /53-55/.
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